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C Active media

In this appendix we provide further details on the extension with an active media, where citizens obtain their
information from a collection of journalists with preferences that may not perfectly reflect the preferences of
the citizens.

C.1 Journalists’ best response

To construct the journalists’ best response, we start from the optimal action a(xj) for an individual journalist
with signal xj

a(xj) = (1� �)E[ ✓ |xj ] + �E[A(✓) |xj ].

If other journalists use a(xj) = kxj +(1�k)z and the politician uses y(✓) = (1� �)✓+ �z, then the aggregate
action is

A(✓) = ky(✓) + (1� k)z = k(1� �)✓ + (1� k(1� �))z (C1)

Collecting terms then gives

a(xj) = (1� �(1� k(1� �)))E[ ✓ |xj ] + �(1� k(1� �)) z; (C2)

which is a weighted average of the posterior and prior expectations.
The posterior expectation continues to be

E[ ✓ |xj ] =
(1� �)↵x

(1� �)2↵x + ↵z

xj +

✓
1� (1� �)↵x

(1� �)2↵x + ↵z

◆
z (C3)

Plugging this formula back into (C2) and matching coe�cients we get the fixed-point condition

k = (1� �(1� k(1� �)))
(1� �)↵x

(1� �)2↵x + ↵z

which has the unique solution

k(�) :=
(1� �)↵

(1� �)2↵+ 1
(C4)

where ↵ := (1� �)↵x/↵z. In this notation, k⇤
nm

= k(0).

C.2 Politician’s welfare
The politician’s value function continues to be

v(k) := max
�2[0,1]

V (�, k) (C5)

where V (�, k) denotes the politician’s ex-ante expected utility if they choose manipulation � and the journalists
have response coe�cient k. This is again

V (�, k) =
1

↵z

(B(�, k)� C(�)) +
1

↵x

k
2 (C6)

where as in our benchmark model, B(�, k) := (k� + 1� k)2 and C(�) := c�
2. In this notion, v⇤ = v(k⇤).

Let vnm(k) denote the politician’s value function without manipulation

vnm(k) := V (0, k)  max
�2[0,1]

V (�, k) =: v(k) (C7)

In this notation, v⇤
nm

= vnm(k⇤
nm

).
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When does manipulation backfire?

Supplementary Proposition 1.

(i) For each � < �1/2 and c < 1, there exists a cuto↵ signal precision ↵
⇤
x
such that for all ↵x < ↵

⇤
x
the

politician’s manipulation backfires, v⇤ < v
⇤
nm

.

(ii) For each � > +1/2 and c > 1, there exists a cuto↵ signal precision ↵
⇤
x
> ↵

⇤
x
such that for all ↵x > ↵

⇤
x

the politician’s manipulation backfires, v⇤ < v
⇤
nm

.

Proof. See Appendix F.2.

To understand why backfiring can occur, notice that the manipulation technology has both direct and indirect
e↵ects on the politician’s payo↵. The direct e↵ect benefits the politician by making the journalists’ signals
noisier than they would be absent manipulation. The indirect e↵ect causes the journalists’ equilibrium
response coe�cient to change from k

⇤
nm

to k
⇤, which may or may not benefit the politician.

Backfiring occurs when the change from k
⇤
nm

to k
⇤ moves against the politician’s interest by a su�ciently

large amount. If � < 0 the politician prefers higher k
⇤ and backfiring will occur when journalists are su�-

ciently less responsive to their signals than they would be absent manipulation, i.e., when k
⇤ is su�ciently

smaller than k
⇤
nm

. If � > 0 the politician prefers lower k⇤ and backfiring will occur when journalists are su�-
ciently more responsive to their signals than they would be absent manipulation, i.e., when k

⇤ is su�ciently
larger than k

⇤
nm

.
To see this, we decompose the change in the politician’s payo↵ as

v
⇤ � v

⇤
nm

= (v(k⇤)� vnm(k⇤)) + (vnm(k⇤)� vnm(k⇤
nm

)) (C8)

Since v(k) � vnm(k) for all k, the first term in the decomposition (C8) is not negative. So to obtain backfiring
the second term vnm(k⇤) � vnm(k⇤

nm
) must be su�ciently negative. Now observe that this second term is a

comparison of the function vnm(k) at two di↵erent points, k⇤ and k
⇤
nm

, where vnm(k) := V (0, k) is given by10

vnm(k) =
1

↵z

(1� k)2 +
1

↵x

k
2
. (C9)

This quadratic in k decreases from vnm(0) = 1/↵z till it reaches its global minimum at kmin := ↵x/(↵x+↵z)
and then increases to vnm(1) = 1/↵x. Now suppose the journalists’ actions are strategic substitutes, � < 0.
Then k

⇤
nm

> kmin and so vnm(k) is strictly increasing on (k⇤
nm

, 1). So if � < 0 a necessary condition for
vnm(k⇤) � vnm(k⇤

nm
) < 0 is that k

⇤
< k

⇤
nm

. Similarly, if the journalists’ actions are strategic complements,
� > 0, then k

⇤
nm

< kmin and so vnm(k) is strictly decreasing on (0, k⇤
nm

). So if � > 0 a necessary condition
for vnm(k⇤)� vnm(k⇤

nm
) < 0 is that k⇤ > k

⇤
nm

.

Conditions on the primitives. We now establish conditions on the primitives su�cient to ensure that
the gap between vnm(k⇤) and vnm(k⇤

nm
) is indeed large enough that the politician’s manipulation backfires.

To do this we use:

Remark 2. Journalists are less responsive to their signals with manipulation

k
⇤(↵, c) < k

⇤
nm

(↵) if and only if c < c
⇤
nm

(↵) (C10)

where

c
⇤
nm

(↵) =

8
>><

>>:

↵

↵� 1

✓
↵

↵+ 1

◆2

if ↵ > 1

+1 if ↵  1

(C11)

Proof. From Lemma 1, if ↵  1 then k(�) is decreasing in �. Any c < +1 implies �
⇤(↵, c) > 0 and hence

k(�⇤) < k(0). Recall that k(0) = ↵/(↵ + 1) =: k⇤
nm

(↵). Therefore, if ↵  1, it is always the case that
k
⇤(↵, c) < k

⇤
nm

(↵). With ↵ > 1, k(�) is first increasing and then decreasing in �. We then need to find

10This expression for vnm(k) can also be obtained as the limit of v(k) from (37) as c ! 1.
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combinations of (↵, c) that give k
⇤(↵, c) = k

⇤
nm

(↵). To do so, first determine the equilibrium �
⇤ that equates

k(�;↵) and k
⇤
nm

(↵), namely

�
⇤
nm

(↵) =
↵� 1

↵
, ↵ > 1 (C12)

Then solve for c that equates �(k⇤
nm

(↵); c) and �
⇤
nm

(↵), namely

c =
↵

↵� 1

✓
↵

↵+ 1

◆2

=: c⇤
nm

(↵) (C13)

(with c
⇤
nm

(↵) = +1 for ↵  1). We now show that k⇤(↵, c) < k
⇤
nm

(↵) i↵ c < c
⇤
nm

(↵). Observe that

�
⇤
nm

(↵) =
↵� 1

↵
> �̂(↵) (C14)

where �̂(↵) is the critical point from Lemma 1. Hence k(�;↵) is decreasing in � for any � � �
⇤
nm

(↵). Now
observe that k(�⇤

nm
(↵);↵) = k

⇤
nm

(↵) so that k
⇤(↵, c) < k

⇤
nm

(↵) i↵ �
⇤(↵, c) > �

⇤
nm

(↵). From Lemma 4 we
know that �⇤(↵, c) is strictly decreasing in c hence any c < c

⇤
nm

(↵) is equivalent to �
⇤(↵, c) > �

⇤
nm

(↵).

In other words, if the composite parameter ↵  1 then we know that k⇤ < k
⇤
nm

regardless of c but if ↵ > 1
then the journalists’ k⇤ is less than k

⇤
nm

only if c is low enough.11

Now observe from (C9) that vnm(k) is a linear combination of the terms (1 � k)2 and k
2 with the

relative importance of the k
2 term decreasing in ↵x. As ↵x decreases, the function vnm(k) behaves more

like the increasing k
2 term so that if � < 0 and k

⇤
< k

⇤
nm

then the second term in the decomposition
vnm(k⇤) � vnm(k⇤

nm
) becomes more and more negative, eventually becoming negative enough that the net

result is for the politician to be worse o↵. Similarly, as ↵x increases, the function vnm(k) behaves more
like the decreasing (1 � k)2 term so that if � > 0 and k

⇤
> k

⇤
nm

the second term in the decomposition
vnm(k⇤) � vnm(k⇤

nm
) becomes more and more negative, eventually becoming negative enough that the net

result is that the politician is again worse o↵.

When does manipulation benefit? Although information manipulation can backfire on the politician,
there are nonetheless clear situations where the politician benefits from information manipulation.

Supplementary Proposition 2. The politician benefits from manipulation, v⇤ > v
⇤
nm

, if either:

(i) The journalists’ actions are strategic substitutes, �  0, and the costs of manipulation are su�ciently
high, c > c

⇤
nm

(↵), or

(ii) The journalists’ actions are strategic complements, � � 0, and the costs of manipulation are su�ciently
low, c < c

⇤
nm

(↵).

Proof. Recall the decomposition (C8) above. Since v(k) � vnm(k) for all k, the first term is not negative,
so for the politician to gain it is su�cient that the second term vnm(k⇤) � vnm(k⇤

nm
) is positive. When

the journalists’ actions are strategic substitutes, � < 0, vnm(k) is strictly increasing on (k⇤
nm

, 1) and hence
vnm(k⇤) � vnm(k⇤

nm
) is positive if k

⇤
> k

⇤
nm

. From Remark 2 we know that k
⇤
> k

⇤
nm

if and only if
c > c

⇤
nm

(↵). Similarly, when the journalists’ actions are strategic substitutes, � > 0, vnm(k) is strictly
decreasing on (0, k⇤

nm
) and hence vnm(k⇤)�vnm(k⇤

nm
) is positive if k⇤ < k

⇤
nm

, which from Remark 2 happens
if and only if c < c

⇤
nm

(↵).

These su�cient conditions guarantee that the introduction of the manipulation technology changes the jour-
nalists’ equilibrium response coe�cient from k

⇤
nm

to k
⇤ in a direction that benefits the politician, i.e., in-

creasing to k
⇤
> k

⇤
nm

if � < 0 or decreasing to k
⇤
< k

⇤
nm

if � > 0. Notice that in the knife-edge special case
with no interactions among journalists, � = 0, the politician benefits from manipulation regardless of c.

Figure 8 illustrates both benefits from manipulation and backfiring in the same figure. The top row
shows the politician’s benefit from manipulation v

⇤ � v
⇤
nm

as a function of the intrinsic precision ↵x for the

11The function c
⇤
nm

(↵) is at first steeply decreasing in ↵, crosses c⇤
nm

(↵) = 1 and then reaches a minimum
before increasing again, approaching c = 1 from below as ↵ ! 1. So in the limit as ↵ ! 1, the question of
whether or not the equilibrium k

⇤ is less than k
⇤
nm

reduces to whether or not c is more or less than 1.
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0 5 10
0

1
↵z

politician payo↵ v⇤

v⇤nm

c > 1

c < 1

intrinsic precision, ↵x

0

gain v⇤ � v⇤nm
! 1�c

↵z

c > 1

c < 1

� < �1/2

gain v⇤ � v⇤nm ! 1�c
↵z

� > +1/2

0 50 100

politician payo↵ v⇤

v⇤nm

intrinsic precision, ↵x

Figure 8: Politician benefits most when c is low and ↵x is high.

Politician’s benefit from manipulation v⇤ � v⇤nm (top row) and payo↵ v⇤ (bottom row) as functions of the intrinsic precision

↵x for various costs of manipulation c when the journalists’ actions are strong strategic substitutes � < �1/2 (left column) or

strong strategic complements � > 1/2 (right column). The politician’s payo↵ absent manipulation v⇤nm asymptotes to zero as

↵x ! 1. If c > 1 the politician’s payo↵ with manipulation v⇤ also asymptotes to zero but if c < 1 then v⇤ asymptotes to

(1 � c)/↵z > 0 so that the politician benefits. The politician benefits the most when when c is low and ↵x is high. In the left

column we use � < �1 to highlight that for this parameter setting v⇤ and v⇤nm need not be monotonic in ↵x.
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case of low costs of manipulation, c < 1 (in blue), and the case of high costs of manipulation, c > 1 (in
red). The bottom row shows the underlying levels v

⇤ for c < 1 (in blue) and c > 1 (in red) along with the
politician’s welfare v

⇤
nm

in the absence of manipulation (dashed black). The left column shows the results
when the journalists’ actions are strong strategic substitutes, � < �1/2. The right column shows the results
when the journalists’ actions are strong strategic complements, � > +1/2.

A striking feature of Figure 8 is that the politician gains the most from manipulation when c is low and
↵x is high, regardless of �.

C.3 Journalists’ and citizens’ welfare
Journalists. We first define the journalists’ loss function

lJ (�) := min
k2[0,1]

LJ (k, �) (C15)

where LJ (k, �) denotes the journalists’ ex-ante expected loss, i.e., the expectation of (40) in the main text
with respect to the prior that ✓ is normally distributed with mean z and precision ↵z, if they choose k when
the politician has manipulation �. This works out to be

LJ (k, �) =
1� �

↵z

B(�, k) +
1

↵x

k
2 (C16)

where again B(�, k) := (k� + 1 � k)2 denotes the politician’s benefit from manipulation. Evaluating at the
journalists’ best response k(�) and collecting terms gives

lJ (�) = LJ (k(�), �) =
1

↵x

✓
k(�)

1� �

◆
=

✓
1

1 + ↵(1� �)2

◆
1� �

↵z

. (C17)

Citizens. The citizens evaluate outcomes according to the loss

Z 1

0
(aj � ✓)2 dj = (A� ✓)2 +

Z 1

0
(aj �A)2 dj (C18)

So the citizens are at their bliss point if the journalists all produce aj = ✓.
Now let LC(k, �) denote the citizens’ ex ante expected loss, i.e., the expectation of (C18) with respect to

the prior that ✓ is normally distributed with mean z and precision ↵z, if the journalists choose k when the
politician has manipulation �. This works out to be

LC(k, �) =
1

↵z

B(�, k) +
1

↵x

k
2 (C19)

as in equation (30) in the main text.

Wedge between journalists’ and citizens’ losses. Comparing (C19) and (C16) we see that

LC(k, �) = LJ (k, �) +
�

↵z

B(�, k) (C20)

In the special case � = 0, where the journalists care only about accurate reporting with no interactions
amongst themselves, the citizens’ loss and the journalists’ loss coincide. More generally, since B(�, k) � 0,
the citizens’ loss is larger than the journalists’ loss whenever � > 0 and is less than the journalists’ loss
whenever � < 0. Intuitively, an incentive to coordinate, � > 0, means that individual journalists respond
more to their common prior z than its underlying precision warrants. Therefore, from the citizens’ point of
view, the journalists are excessively responsive to their prior and hence under-responsive to the information
contained in their signals. For example, if � ! 1 the journalists can be quite content when they are producing
similar reports, ai ⇡ A, even if those reports are far from ✓ and hence very unsatisfactory from the citizens’
point of view.
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E↵ects of manipulation on journalists and citizens. Evaluating LJ (k, �) at the journalists’ best
response k(�) we can then write

lC(�) := LC(k(�), �) = lJ (�) +
�↵z

(1� �)2
lJ (�)2 (C21)

The comparison of the citizens’ equilibrium loss with and without manipulation is then reduced to comparing
l
⇤
C = lC(�⇤) and l

⇤
C,nm = lC(0). Similarly, the comparison of the journalists’ equilibrium loss with and without

manipulation is reduced to comparing l
⇤
J = lJ (�⇤) and l

⇤
J ,nm

= lJ (0). Our main result here is:

Supplementary Proposition 3.

(i) The journalists are worse o↵ with manipulation, l⇤J > l
⇤
J ,nm

.

(ii) The citizens are worse o↵ with manipulation, l⇤C > l
⇤
C,nm, if � > �1.

(iii) The citizens are better o↵ with manipulation, l⇤C < l
⇤
C,nm, if � < �1 and ↵x < b↵ ⇤⇤

x
.

Proof. See Appendix F.2.

So the journalists are always worse o↵ with manipulation. Whether the citizens are worse o↵ or not depends on
the strategic interactions among the journalists. If the journalists’ actions are not strong strategic substitutes,
� > �1, the citizens are also unambiguously worse o↵ with manipulation. But if the journalists’ actions are
strong strategic substitutes, � < �1, and if in addition the intrinsic precision of journalists’ signals is low
enough, ↵x < b↵ ⇤⇤

x
, then, perhaps surprisingly, the citizens are in fact better o↵ with manipulation. To

understand this, first notice that when � < �1, the journalists have a strong incentive to di↵erentiate
themselves from one another and their response k to their idiosyncratic signals is, from the citizens’ point of
view, more than is warranted by the underlying precision of their signals. This is especially problematic for the
citizens when the signals are imprecise, i.e., when ↵x is very low. By reducing k, the politician’s manipulation
then “corrects” for this, which makes the citizens better o↵ than they would be absent manipulation.12

E↵ects of ↵x on journalists’ loss. Notice from the journalists’ loss function (C17) the strategic interaction
term (1� �) and the prior precision ↵z simply scale the whole loss. Similar to the citizens’ loss (C17) in the
benchmark model, we can measure the equilibrium payo↵s for the journalists, l⇤J = lJ (�⇤), by their indirect
utility evaluated at the equilibrium manipulation:

u
⇤(↵, c) = ↵(1� �

⇤(↵, c))2. (C22)

This term is identical to (32) in the main text except that the composite precision parameter ↵ := (1��)↵x/↵z

now incorporates the e↵ect of the strategic interactions. The welfare results on u
⇤(↵, c) in Proposition 3 and

Remark 1 of the main text therefore also apply to the equilibrium payo↵s of the journalists in the extended
model. In the following corollary, we restate the welfare results in terms of the journalists’ loss and the
intrinsic signal precision ↵x:

Remark 3. The journalists’ loss l
⇤
J is strictly decreasing in ↵x if and only if ↵x < ↵

⇤⇤
x
. For c > 1 the

critical point ↵⇤⇤
x

= +1.

Proof. The journalists’ loss l⇤J is proportional to (1+u
⇤(↵, c))�1. Using part (i) and (ii) of Proposition 3 and

the definition of the composite precision parameter ↵ := (1 � �)↵x/↵z, we obtain ↵
⇤⇤
x

= (↵z/(1 � �))↵⇤(c)
where ↵

⇤(c) is the critical value in part (ii) of Proposition 3.

12The region of the parameter space where the citizens are better o↵ with manipulation is in a sense quite
small. The critical point turns out to be

b↵ ⇤⇤
x

= �
✓

1 + �

(1� �)2

◆
↵z, � < �1

This is maximized at � = �3 for which b↵ ⇤⇤
x

= ↵z/8. Even allowing the value of � most favorable to this
scenario, it only occurs if the intrinsic signal precision ↵x is less than one-eighth of the prior precision ↵z.
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0 50
0

1��
↵z

1
↵z

dashed lines, no manipulation

(i.a) � > �1 and c > 1

citizen loss l⇤C
journalist loss l⇤J

0 ↵⇤⇤
x 2.5

0

1
↵z

1��

↵z

(ii.a) � < �1 and c > 1

0 ↵⇤⇤
x ↵⇤⇤

x ↵⇤⇤
x 2.5

0

1
↵z

1��
↵z

! 1��
↵z

! 1
↵z

intrinsic precision, ↵x

(ii.b) � < �1 and c < 1

0 ↵⇤⇤
x 50

0

1��
↵z

1
↵z

! 1��
↵z

! 1
↵z

intrinsic precision, ↵x

(i.b) � > �1 and c < 1

Figure 9: Citizens and journalists lose most when c is low and ↵x is high.

Citizens’ loss l⇤C and journalists’ loss l⇤J as functions of ↵x for c > 1 (top row) and c < 1 (bottom row) and for � > �1 (left

column) and � < �1 (right column). If � > �1 both loss functions move in the same direction in response to ↵x. If c > 1 both

loss functions are strictly decreasing (top left). If c < 1 both loss functions are [-shaped with critical point ↵⇤⇤
x (bottom left).

If � < �1 the loss functions move in the same direction only between the critical points ↵⇤⇤
x and ↵⇤⇤

x (right column). If c < 1

the citizens’ loss asymptotes to 1/↵z and the journalists’ loss asymptotes to (1��)/↵z . For the left column we use � > 0 which

implies that the journalists’ loss is less than the citizens’ loss. The colored dashed lines show the corresponding loss functions

absent manipulation. If � < �1 then for ↵x su�ciently small the citizens are better o↵ with manipulation.
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E↵ects of ↵x on citizens’ loss. Evaluating the expression for the citizens’ loss in (C21) at the equilibrium
manipulation �

⇤ gives

l
⇤
C = l

⇤
J +

�↵z

(1� �)2
l
⇤ 2
J (C23)

Hence the e↵ects of ↵x on the citizens’ equilibrium loss are given by the total derivative

dl
⇤
C

d↵x

=
dl

⇤
J

d↵x


1 +

2�↵z

(1� �)2
l
⇤
J

�
(C24)

This expression is convenient because all the e↵ects of ↵x enter l⇤C only through l
⇤
J . This gives:

Supplementary Proposition 4. The citizens’ loss l⇤C and the journalists’ loss l⇤J move in the same direction
in response to changes in ↵x if and only if either (i) � > �1, or (ii) � < �1 and ↵x 2 (↵⇤⇤

x
,↵

⇤⇤
x
). For c > 1,

↵
⇤⇤
x

= +1.

Proof. See Appendix F.2.

Figure 9 illustrates the e↵ects of ↵x on the journalists’ and citizens’ loss. The left and right columns
show the cases � > �1 and � < �1 respectively. The top and bottom rows show the cases c > 1 and c < 1
respectively. Each panel shows the loss of the citizens l

⇤
C and the journalists l

⇤
J as functions of ↵x. The

dashed lines demarcate the critical points ↵
⇤⇤
x

and ↵
⇤⇤
x
,↵

⇤⇤
x
. As with the journalists’ loss, the limit of the

citizens’ loss as ↵x ! 1 is sensitive to the costs of manipulation c. If c < 1, as ↵x ! 1 the citizens’s loss l⇤C
asymptotes to the same loss 1/↵z the citizens would have if ↵x = 0. If c > 1, the citizens’s loss l⇤C asymptotes
to zero, the same limit of the citizens’ loss without manipulation, l⇤C,nm.

D Heterogeneous priors and manipulation of the signal
variance

In this appendix we provide further details on the extension where citizens have heterogeneous priors and
where the politician can manipulate the signal variance.

Setup. Given that the citizens have linear strategies a(xi, zi) = kxi + (1 � k)zi the politican’s problem is
now to choose y and � to maximize

V (y, �) =

Z 1

0
(k(y + "i) + (1� k)(z + ⌘i)� ✓)2 di� c(y � ✓)2 � c�(� � 1)2

= (ky + (1� k)z � ✓)2 + ��
2
x
k
2 + �

2
⌘
(1� k)2 � c(y � ✓)2 � c�(� � 1)2

The first order condition for the variance manipulation factor � can be written

�(k) = 1 +
�
2
x

2c�
k
2 (D1)

And since the objective is separable in y and � the first order condition for the signal mean y is as in the
benchmark model

y(✓) = (1� �)✓ + �z, �(k) =
k � k

2

c� k2
(D2)

where the second order condition again requires c � k
2 � 0. The optimal action for the citizens is ai =

E[✓ |xi, zi]. The citizens have signals xi = y + "i = (1 � �)✓ + �z + "i and prior zi = z + ⌘i = ✓ + "z + ⌘i.
Using the properties of the bivariate normal distribution, conditional on xi, zi the citizens posterior for ✓ is
normal with expected value

E[✓ |xi, zi] =
(1� �)�2

z
+ �

2
⌘

(1� �)2�2
z
+ �2

⌘
+ ��2

x

xi +

 
1�

(1� �)�2
z
+ �

2
⌘

(1� �)2�2
z
+ �2

⌘
+ ��2

x

!
zi

Hence indeed the citizens have strategies of the form a(xi, zi) = kxi + (1� k)zi where

k(�, �) =
(1� �)�2

z
+ �

2
⌘

(1� �)2�2
z
+ �2

⌘
+ ��2

x

(D3)

8



Equilibrium.

Supplementary Proposition 5. There is a unique equilibrium, that is, a unique triple k
⇤
, �

⇤
, �

⇤ simulta-
neously satisfying the three best response functions (D1), (D2), and (D3)

Proof. Plugging the expressions for �(k) and �(k) into (D3), we can write the equilibrium problem as solving
the following fixed point problem in k

L (k) = R (k) (D4)

analogous to (A1), where now

L(k) := (k � 1)
�
2
⌘

�2
z

+ k

✓
1 +

�
2
x

2c�
k
2

◆
�
2
x

�2
z

(D5)

and where

R(k) := c
(c� k)(1� k)

(c� k2)2
(D6)

The curve R(k) on the RHS is exactly the same as in (A2) from the proof of Proposition 1 and is
strictly decreasing in k with limits R(0) = 1 and R(min(

p
c, 1)) =: R(c). The curve L(k) on the LHS is a

generalization of its counterpart in (A2) and nests our benchmark model as a special case. In particular,
when �

2
⌘
= 0 and c� ! +1 the LHS reduces to

L(k) = k
�
2
x

�2
z

, {�2
⌘
= 0, c� ! 1}

which, recognizing �
2
x
/�

2
z
= ↵z/↵x = 1/↵ is the same L(k) = k/↵ as in the benchmark model (A2). Here

the LHS is strictly increasing in k with limits L(0) = ��
2
⌘
/�

2
z
< 0 and L(min(

p
c, 1)) := L(c).

If c � 1, we clearly have L(c) = L(1) > 0 and R(c) = R(1) = 0, so by the intermediate value theorem,
there is a unique k

⇤ 2 [0, 1] solving L(k⇤) = R(k⇤).
If c < 1, as k !

p
c on the LHS we have finite limit

L(c) = L(
p
c) = (

p
c� 1)

�
2
⌘

�2
z

+
p
c

✓
1 +

�
2
x

2c�
c

◆
�
2
x

�2
z

(D7)

whereas on the RHS we have

R(c) = R(
p
c) = c(c�

p
c)(1� c) lim

k!
p
c

1

(c� k2)2
= �1 (D8)

since c <
p
c < 1. Hence by the intermediate value theorem there is a unique k

⇤ 2 [0,
p
c] such that

L(k⇤) = R(k⇤). The equilibrium �
⇤ and �

⇤ are in turn determined by the best response functions �(k) and
�(k) evaluated at k⇤.

Comparative statics.

Supplementary Proposition 6. The equilibrium signal variance �
2 ⇤
x

= �
⇤
�
2
x
is:

(i) Increasing in the intrinsic signal variance �
2
x
, and

(ii) Increasing in the prior dispersion �
2
⌘
.

Proof. For part (i), from the best response (D1), the dervivative of �2 ⇤
x

= �
⇤
�
2
x
is

d

d�2
x

�
2 ⇤
x

=
d

d�2
x

✓
�
2
x
+

1

2c�

�
k�

2 ⇤
x

�2
◆

= 1 +
k�

2
x

c�
+

k�
4
x

c�

dk

d�2
x

which is positive if and only if

dk

d�2
x

> �
1 + k

2
�
2
x

c�

k�4
x

c�

= �
k + k

3
�
2
x

c�

k2�4
x

c�

(D9)
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The equilibrium k
⇤ is the solution to the fixed point problem (D4), which can be written:

H
�
k,�

2
x

�
:= k

✓
c� k

c� k2

◆2

�
2
z
+ k

�
�
2
⌘
+ �

2
x

�
+

k
3

2c�

�
�
2
x

�2 � c� k

c� k2
�
2
z
� �

2
⌘
= 0 (D10)

Using the implicit function theorem:

dk

d�2
x

= �
@H

@�2
x

@H

@k

= �
k + k

3 �
2
x

c�

3
2k

2 �4
x

c�
+ (�2

⌘
+ �2

x
) + �2

z


@

@k

✓
k

⇣
c�k

c�k2

⌘2
� c�k

c�k2

◆� (D11)

Comparing the denominators of the RHS of inequalities (D9) and (D11), we find that a su�cient condition
for (D9) to hold is

@

@k

 
k

✓
c� k

c� k2

◆2

� c� k

c� k2

!
> 0 (D12)

The derivative works out to be ✓
c� k

c� k2

◆2

+

�
2kc� k

2 � c
�2

(c� k2)3
(D13)

which is strictly positive since from the second order condition of the politician’s maximization, c� k
2
> 0.

For part (ii), from the best response (D1), we have �
2 ⇤
x

= �
⇤
�
2
x
is increasing in �

2
⌘
if and only if k⇤ is

increasing in �
2
⌘
. Recall that k

⇤ is determined in the fixed point problem (D4). Then observe that R (k) is

independent of
�
�
2
x
,�

2
⌘

�
and L (k) is decreasing in �

2
⌘
. Combining with the fact that R0 (k) < 0 and L

0 (k) > 0,
we can conclude that k⇤ is increasing in �

2
⌘
.

“Regime changes” in the amount of manipulation. First we define the mapping:

F
�
k,�

2
z
,�

2
x
,�

2
⌘
, c�

�
:=

�
2
z

�2
z
+ �4

x
k3 (1 + k) /c� + �2

⌘
(1 + k)

(D14)

To facilitate some comparisons, in some of the expressions below we return to precision notation ↵x = 1/�2
x

and ↵z = 1/�2
z
with relative precision ↵ = ↵x/↵z etc. With this notation in mind we then have a result

analogous to Proposition 2 in the main text:

Supplementary Proposition 7.

(i) For each ↵ < 2 +
p

4 + 2/ (c�↵z), the politician’s equilibrium manipulation �
⇤ is smoothly decreasing

in c with
d�

⇤

dc

����
c=1

= � k
⇤

(1� k⇤) (1 + k⇤)2 + (1� k⇤)2 k⇤F
�
k⇤,�2

z
,�2

x
,�2

⌘
, c�

� < 0 (D15)

This derivative approaches �1 as ↵ ! 2 +
p

4 + 2/ (c�↵z).

(ii) For each ↵ > 2 +
p
4 + 2/ (c�↵z), the politician’s manipulation jumps discontinuously from � (↵,↵x)

as c ! 1� to �(↵,↵x) as c ! 1+ where

� (↵,↵x) , � (↵,↵x) =
1

2

✓
1±

q
1� (4/↵)� 2/(c�↵↵x)

◆
.

The size of the jump � (↵,↵x)� � (↵,↵x) is increasing in ↵x and independent of �2
⌘
.

(iii) For any c > 1, the politician’s equilibrium manipulation �
⇤ is bounded above by 1/2 and can be made

arbitrarily close to zero by making ↵x large enough.

Proof. For part (i), applying the implicit function theorem to �
⇤ = � (k⇤ (�⇤) , c), we obtain

d�
⇤

dc
=

✓
1

1� �0 (k⇤) k0 (�⇤)

◆
@� (k⇤, c)

@c
(D16)
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just as in equation (A15), but now we have

k
0 (�⇤)

����
c=1

= � (1� k
⇤)�2

z
/(1 + k

2)

(�2
x
)2 (k⇤)2 /c� + �2

z
/

⇣
k⇤ + (k⇤)2

⌘
+ �2

⌘
/k⇤

�
0 (k⇤)

����
c=1

=
1

(1 + k⇤)2

@� (k⇤, c)

@c

����
c=1

= � k
⇤

(1� k⇤) (1 + k⇤)2
.

Substituting these expressions in (D16) and using the definition of F
�
k,�

2
z
,�

2
x
,�

2
⌘
, c�

�
in (D14) and simpli-

fying then gives the expression in (D15).
Notice that F

�
k
⇤
,�

2
z
,�

2
x
,�

2
⌘
, c�

�
= 1 if c� = 1 and �

2
⌘
= 0, which is our benchmark case where

d�
⇤

dc

����
c=1

= � k
⇤

(1� k⇤) (1 + k⇤)2 + (1� k⇤)2 k⇤

This derivative approaches �1 as k⇤ ! 1. In turn, as in the main text, k⇤ is increasing in ↵ and approaches
1 as ↵ becomes su�ciently large.

For part (ii), � (↵,↵x) and � (↵,↵x) are the roots of

k (�, 1) =
(1� �)�2

z
+ �

2
⌘

(1� �)2 �2
z
+ �2

⌘
+ �2

x
+ 1

2c�
(�2

x
)2

= 1

The roots exist when ↵ � 2 +
p

4 + 2/ (c�↵z). In the knife-edge case ↵ = 2 +
p

4 + 2/ (c�↵z) exactly, the
two roots are the same and are equal to 1/2 so that the unique equilibrium is (k⇤ = 1, �⇤ = 1/2).

For part (iii), the proof is the same as the part (iii) of Proposition 2.

E Weights on components of citizens’ loss function

In this appendix, we discuss a further extension to our benchmark model that allows the citizens to have
di↵erent weights on the (ai� ✓)2 and (A� ✓)2 terms in their loss function (in other words, allows the citizens
to weigh these discord and disinformation terms di↵erently to the policitican). In particular, suppose each
citizen seeks to minimize the expected loss

li = (ai � ✓)2 + !(A� ✓)2 (E1)

The weight ! does not a↵ect their optimal action so we still have the usual

ai = kxi + (1� k)z (E2)

where k is given by

k(�) =
(1� �)↵

(1� �)2↵+ 1
, ↵ := ↵x/↵z (E3)

The weight ! plays no role in determining the equilibrium outcomes k
⇤
, �

⇤ but it does a↵ect how those
outcomes are evaluated. The citizens’ ex ante expected loss is now

L(k, �;!) =
1 + !

↵z

B(k, �) +
1

↵x

k
2 (E4)

where as usual B(k, �) = (k� + 1� k)2. Notice that ! = 0 is our benchmark model. Now write this as

L(k, �;!) = L(k, �; 0) +
!

↵z

B(k, �). (E5)
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And recall that at the best response

B(k(�), �) = (1� k(�) (1� �))2 =

✓
k(�)

↵(1� �)

◆2

(E6)

so that we can write

L(k, �; 0) =
1

↵x

k(�)

1� �
. (E7)

which then implies

B(k(�), �) =
⇣
↵x

↵
L(k, �; 0)

⌘2
= (↵zL(k, �; 0))

2 (E8)

so that we can then write
L(k, �;!) = L(k, �; 0) + !↵zL(k, �; 0)

2 (E9)

Now let l
⇤(!) := L(k⇤, �⇤;!). In this notation l

⇤(0) is the citizens’ loss in our benchmark model. We then
have the following welfare result analogous to Supplementary Proposition 4 in Appendix C above.

Remark 4. l
⇤(!) and l

⇤(0) move in the same direction in response to changes in ↵x if and only if either (i)
! > �1/2, or (ii) ! < �1/2 and ↵x 2 (↵⇤⇤

x
,↵

⇤⇤
x
). For c > 1, ↵⇤⇤

x
= +1.

Proof. From (E9) we have
dl

⇤(!)

d↵x

= (1 + 2!↵zl
⇤(0))⇥ dl

⇤(0)

d↵x

So the two derivatives share the same sign if and only if

1 + 2!↵zl
⇤(0) > 0 (E10)

Clearly ! � 0 su�ces for the inequality above. When ! < 0, the inequality above can be written as

l
⇤(0) < � 1

2!↵z

=: lcrit (E11)

We know from Proposition 3 and Remark 1 that the maximum of l⇤(0) is l
⇤
max

= 1/↵z. If l⇤
max

< lcrit,
i.e., if ! > �1/2, the inequality (E11) holds. Alternatively, if l⇤

max
< lcrit, i.e., if ! < �1/2, there exists a

subset of ↵x such that the inequality (E11) does not hold. For any c > 1, l⇤(0) is strictly decreasing in ↵x

with lim↵x!0+ l
⇤(0) = l

⇤
max

and lim↵x!1 l
⇤(0) = 0. For any c < 1, l⇤(0) is strictly decreasing in ↵x if and

only if ↵x < ↵
⇤⇤
x
, and lim↵x!0+ l

⇤(0) = lim↵x!1 l
⇤(0) = l

⇤
max

. Using the same argument as in the proof of
Supplementary Proposition 4, we can conclude that conditional on ! < �1/2, the inequality (E11) holds if
and only if ↵x 2 (↵⇤⇤

x
,↵

⇤⇤
x
).

F Omitted proofs

In this appendix we provide proofs of results hitherto omitted. We first state and prove two supplementary
lemmas used in proof of Proposition 3 in the main text. We then provide proofs of the supplemantary
propositions in the extension with active media in Appendix C above.

F.1 Further details from proof of Proposition 3 in main text

Supplementary Lemma 1. The total derivative of the journalists’ equilibrium loss l⇤ with respect to ↵ is
strictly positive if and only if

F (k⇤) := k
⇤4 � 2k⇤3 + 2ck⇤ � c

2
> 0 (F1)

Proof. Recall that l⇤ = l(�⇤;↵) where

l(�;↵) =
1

(1� �)2↵+ 1
(F2)
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From this we obtain
dl

⇤

d↵
> 0 , (1� �

⇤)� 2↵
d�

⇤

d↵
< 0 (F3)

Equivalently, if and only if
d�

⇤

d↵
>

1

2↵
(1� �

⇤) > 0 (F4)

Now recall that in equilibrium the politician’s manipulation depends on ↵x only via the journalists’ response
coe�cient, �⇤(↵) = �(k⇤(↵)), so that

d�
⇤

d↵
= �

0(k⇤)
dk

⇤

d↵
(F5)

So we can write condition (F4) as

�
0(k⇤)

dk
⇤

d↵
>

1

2↵
(1� �

⇤) > 0 (F6)

Applying the implicit function theorem to the equilibrium condition (A2) from the main text we have

dk
⇤

d↵
=

1
↵2 k

⇤

1
↵
�R0(k⇤)

> 0 (F7)

where R(k) is defined in (A2) in the main text. Plugging this into (F6) and simplifying we get the equivalent
condition

1

↵

✓
�
0(k⇤)k⇤ � 1

2
(1� �

⇤)

◆
> �1

2
(1� �

⇤)R0(k⇤) (F8)

Now observe from (A7) in the main text that

�
0(k⇤)k⇤ � 1

2
(1� �

⇤) =
1

2

✓
1

c� k⇤2

◆2 �
k
⇤3 � 3ck⇤2 + 3ck⇤ � c

2
�

(F9)

and that using the formula for R0(k) given in (A3) in the main text we can calculate that

1

2
(1� �

⇤)R0(k⇤) =
1

2

✓
1

c� k⇤2

◆2

R(k⇤)
1

1� k⇤
P (k⇤) (F10)

where P (k) is also defined in (A3). Plugging these calculations back into (F8) gives

1

↵

 
1

2

✓
1

c� k⇤2

◆2 �
k
⇤3 � 3ck⇤2 + 3ck⇤ � c

2
�
!

> �1

2

✓
1

c� k⇤2

◆2

R(k⇤)
1

1� k⇤
P (k⇤) (F11)

Canceling common terms gives the condition

1

↵

�
k
⇤3 � 3ck⇤2 + 3ck⇤ � c

2
�
> �R(k⇤)

1

1� k⇤
P (k⇤) (F12)

Using the equilibrium condition L(k⇤) = R(k⇤) from (A2) gives

1

↵

�
k
⇤3 � 3ck⇤2 + 3ck⇤ � c

2
�
> � 1

↵

k
⇤

1� k⇤
P (k⇤) (F13)

Using the definition of P (k) and canceling more common terms gives the condition

F (k⇤) := k
⇤4 � 2k⇤3 + 2ck⇤ � c

2
> 0 (F14)

Supplementary Lemma 2. Define

F (k) := k
4 � 2k3 + 2ck � c

2 (F15)

(i) If c > 1, then F (k) < 0;

(ii) If c < 1, there is an interval (k, k) with 0 < k < k < 1 such that F (k) > 0 for k 2 (k, k) and F (k)  0
otherwise. Moreover, the cuto↵s are on either side of c so that 0 < k < c < k < 1.
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Proof. Write F (k) = J(k; c)�G(k) where J(k; c) := 2ck� c
2 and G(k) := 2k3 � k

4. Observe that G(0) = 0,
G(1) = 1, G(k) < k for all k; G0(k) = 2k2(3�2k) � 0 with G

0(0) = 0 and G
0(1) = 2; and G

00(k) = 12k(1�k) �
0 so that G

0(k)  G
0(1) = 2 for all k. Further observe that J(0; c) = �c

2
< 0, J(1; c) = 2c � c

2  1 (with
equality if c = 1) and J

0(k; c) = 2c > 0 for all k so that J(k; c)  J(1; c) = 2c � c
2  1 for all k, c. These

imply F (0) = J(0; c)�G(0) = �c
2
< 0 and F (1) = J(1; c)�G(1) = 2c� c

2 � 1  0 (with equality if c = 1);
F

0(k) = J
0(k; c)�G

0(k) = 2c�G
0(k) and F

00(k) = �G
00(k)  0. Since G

0(k)  2 we have

F
0(k) = J

0(k; c)�G
0(k) = 2c�G

0(k) � 2c� 2 = 2(c� 1) (F16)

For part (i) c > 1. Then F
0(k) � 2(c � 1) > 0 so F (k) is strictly increasing from F (0) = �c

2
< 0 to

F (1) = 2c� c
2 � 1 < 0 so that F (k) < 0 for all k.

For part (ii) c < 1. Then since G
0(k) is monotone increasing from G

0(0) = 0 to G
0(1) = 2 there is a

unique critical point k̃ such that
F

0(k̃) = 0 , 2c = G
0(k̃) (F17)

Since F
00(k)  0, this critical point maximizes F (k) hence

F (k)  max
k2[0,1]

F (k) = F (k̃) (F18)

and observe that if we take k = c < 1 (which is feasible since here c < 1) then we have

F (c) = J(c; c)�G(c) = 2c2 � c
2 �G(c) = c

2 � 2c3 + c
4 = c

2(1� 2c+ c
2) > 0 (F19)

so that indeed
F (k̃) � F (c) > 0 (F20)

Hence for c < 1 there exist k such that F (k) > 0. More precisely, the function F (k) increases from F (0) =
�c

2
< 0 to a lower cuto↵ k 2 (0, k̃) defined by F (k) = 0. The function F (k) keeps increasing until it reaches

the critical point k̃ at which F
0(k̃) = 0 and F (k̃) > 0. From there F (k) decreases, crossing zero again at a

higher cuto↵ k 2 (k̃, 1) defined by F (k) = 0 and keeps decreasing until F (1) = 2c� c
2 � 1 < 0 (since c < 1).

So for c < 1 there is an interval (k, k) with 0 < k < k < 1 such that F (k) > 0 for k 2 (k, k) and F (k)  0
otherwise. For c < 1 these critical points are defined by the roots of F (k; c) = 0. Observe that since F (c) > 0
yet k is the first k for which F (k) = 0 it must be the case that k < c. Likewise since F (k) = 0 it must also
be the case that k > c. In short, the cuto↵s are on either side of c so that 0 < k < c < k < 1.

F.2 Proofs of additional results from extension with active media

Proof of Supplementary Proposition 1

Using the fixed point condition (A2) with the redefined ↵ = (1� �)↵x/↵z, we can write

v
⇤ =

1

(1� �)↵x

⇢
k
⇤ � �k

⇤2 +
k
⇤2(1� k

⇤)2

c� k⇤

�
(F21)

Using the analogous condition for k⇤
nm

, we can write

v
⇤
nm

=
1

(1� �)↵x

�
k
⇤
nm

� �k
⇤2
nm

 
(F22)

Hence the politician’s manipulation backfires, v⇤ < v
⇤
nm

, if and only if

g(k⇤) < f(k⇤
nm

)� f(k⇤) (F23)

where

f(k) := k � �k
2
, g(k) :=

k
2(1� k)2

c� k
� 0 (F24)

For part (i) suppose that � < 0. We know from (C8) and (C9) that a necessary condition for the
politician’s manipulation to backfire is k < k

⇤
nm

. We can rewrite the inequality in (F23) as

k
⇤2(1� k

⇤)2

c� k⇤
< (k⇤

nm
� k)(1� �(k⇤

nm
+ k

⇤)) (F25)
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Using the fixed point conditions (A2) for both k
⇤ and k

⇤
nm

, we can rewrite the key condition (F25) as

� <
1

c� k⇤
K1K2

K3K4
(F26)

where

K1 := 4ck⇤2 � c
2 � k

⇤3 � 2ck⇤3 � k
⇤4 + k

⇤5

K2 := c(c� k
⇤)(1� k

⇤) + k
⇤(c� k

⇤2)2 > 0

K3 := k
⇤3 � 2ck⇤ + c > 0

K4 := (1 + k
⇤)(c� k

⇤2)2 + c(c� k
⇤)(1� k

⇤) > 0

Now consider taking ↵x ! 0 for fixed � < 0 such that k⇤ ! 0. We then have the following limits

K1 ! �c
2
, K2 ! +c

2
, K3 ! c, K4 ! 2c2

So in the limit the RHS of (F26) is

1

c� k⇤
K1K2

K3K4
! 1

(c� 0)

(�c
2)(c2)

(c)(2c2)
= �1

2
(F27)

Hence for any � < �1/2 we can find ↵x su�ciently close to zero such that (F26) is satisfied and in turn the
politician’s manipulation backfires, v⇤ < v

⇤
nm

.
For part (ii), suppose that � > 0. We know from (C8) and (C9) that the necessary condition for the

politician’s manipulation to backfire is k⇤ > k
⇤
nm

. We can rewrite the inequality in (F23) as

k
⇤2(1� k

⇤)2

k⇤ � k⇤
nm

< (�(k⇤
nm

+ k
⇤)� 1))(c� k

⇤) (F28)

Using the fixed point conditions (A2) for both k
⇤ and k

⇤
nm

, we can rewrite this key condition as

k
⇤2(1� k

⇤)
k⇤
nm
k⇤

⇣
c

(c�k⇤)
(c�k⇤2)2

⌘
� 1

< (�(k⇤
nm

+ k
⇤)� 1))(c� k

⇤) (F29)

Observe that if, in addition, c > 1 and � > 1/2, then the RHS of (F29) converges to a strictly positive
constant

lim
↵x!1

(�(k⇤
nm

+ k
⇤)� 1))(c� k

⇤) = (�2� 1)(c� 1) > 0 (F30)

(since k
⇤ ! 1 if c > 1). But the LHS of (F29) converges to zero

lim
↵x!1

k
⇤2(1� k

⇤)
k⇤
nm
k⇤ c

c�k⇤

(c�k⇤2)2 � 1
=

0+

c

(c�1) � 1
= 0+ (F31)

Therefore, if k⇤ > k
⇤
nm

, c > 1 and � > 1/2 then there exists ↵
⇤
x
such that for ↵x > ↵

⇤
x
the LHS of (F29) is

strictly less than the RHS of (F29) so that the politician’s manipulation backfires, v⇤ < v
⇤
nm

.
Finally, we know from Remark 2 that k

⇤
< k

⇤
nm

if and only if c < c
⇤
nm

(↵). Also observe that c < 1
is su�cient for c < c

⇤
nm

(↵) if 1 < c
⇤
nm

(↵). From (C11) we have 1 < c
⇤
nm

(↵) if ↵ < 1, or if ↵ > 1 and
↵ < (1 +

p
5)/2. Since ↵ = (1� �)↵x/↵z, the critical point ↵⇤

x
must be

↵
⇤
x
<

✓
1 +

p
5

2

◆✓
↵z

1� �

◆
(F32)

Likewise, c > 1 is su�cient condition for c > c
⇤
nm

(↵) if 1 > c
⇤
nm

(↵), and we need ↵ > (1 +
p
5)/2 to ensure

that 1 > c
⇤
nm

(↵). Since ↵ = (1� �)↵x/↵z, the critical point ↵⇤
x
must be

↵
⇤
x
>

✓
1 +

p
5

2

◆✓
↵z

1� �

◆
(F33)

⇤
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Proof of Supplementary Proposition 3.

For part(i), lJ (�) is increasing in � from equation (C17). Hence, lJ (�⇤) > lJ (0) whenever �⇤ > 0. We then
have that the journalists are unambiguously worse o↵ when the politician can manipulate. For part (ii) use
l
⇤
C = lC(�⇤) and equation (C21) to write

l
⇤
C = lJ (�⇤) +

�↵z

(1� �)2
lJ (�⇤)2 (F34)

and likewise

l
⇤
C,nm = lJ (0) +

�↵z

(1� �)2
lJ (0)2 (F35)

Di↵erencing these expressions we can write

l
⇤
C � l

⇤
C,nm =

⇣
lJ (�⇤)� lJ (0)

⌘
⇥

1 +

�↵z

(1� �)2

⇣
lJ (�⇤) + lJ (0)

⌘�
(F36)

Now write the term in square brackets on the LHS as �(�⇤) where �(�) is the function

�(�) := 1 +
�↵z

(1� �)2

⇣
lJ (�) + lJ (0)

⌘
(F37)

From part (i) we know lJ (�⇤) > lJ (0) so l
⇤
C > l

⇤
C,nm if and only if �(�⇤) > 0. Since ↵z > 0 and lJ (�⇤) >

lJ (0) > 0, a su�cient condition for �(�⇤) > 0 is that � > 0. To prove part (ii) we need to show that any
� > �1 is also su�cient. To see this, observe that since lJ (�) is strictly increasing in �, for � < 0 we also
know that �(�) is strictly decreasing in � which in turn implies �(�) � �(1). Hence if � < 0 a su�cient
condition for �(�⇤) > 0 is that �(1) > 0. Calculating �(1) gives

�(1) = 1 +
�↵z

(1� �)2

⇣
lJ (1) + lJ (0)

⌘

= 1 +
�↵z

(1� �)2

⇣1� �

↵z

+
1� �

(1� �)↵x + ↵z

⌘

where the second equality follows from the expression for lJ (�) in equation (C17) evaluated at � = 1 and
� = 0. Simplifying further

�(1) = 1 +
�

1� �

⇣
1 +

1

1 + ↵

⌘
(F38)

where ↵ := (1� �)↵x/↵z > 0. So for � < 0 a su�cient condition for �(1) > 0 and hence �(�⇤) > 0 is

�

1� �

⇣
1 +

1

1 + ↵

⌘
> �1 (F39)

or equivalently
1 + ↵ > �� (F40)

Since ↵ > 0 a su�cient condition for this is � > �1. To summarize, any � > �1 is su�cient for �(�⇤) > 0
and hence su�cient for l

⇤
C > l

⇤
C,nm. For part (iii) we then know that � < �1 is necessary for l

⇤
C < l

⇤
C,nm.

Recall that �(�) is strictly decreasing in �, i.e., �(�)  �(0), for � < 0. Hence for � < �1 a su�cient
condition for �(�⇤) < 0 is that �(0) < 0. Calculating �(0) gives

�(0) = 1 +
�↵z

(1� �)2

⇣
lJ (0) + lJ (0)

⌘

= 1 +
�↵z

(1� �)2

⇣ 2(1� �)

(1� �)↵x + ↵z

⌘

= 1 +
�

1� �

⇣ 2

1 + ↵

⌘

So for � < �1 a su�cient condition for �(0) < 0 and hence �(�⇤) < 0 is

↵ <
�+ 1

�� 1
= �

✓
1 + �

1� �

◆
, � < �1 (F41)
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Since ↵ := (1� �)↵x/↵z > 0 we rewrite this as

↵x < b↵⇤⇤
x

:= �
✓

1 + �

(1� �)2

◆
↵z, � < �1 (F42)

To summarize, for each � < �1 there is a critical point b↵⇤⇤
x

such that together � < �1 and ↵x < b↵⇤⇤
x

are
su�cient for �(�⇤) < �(0) < 0 and hence su�cient for l⇤C < l

⇤
C,nm. ⇤

Proof of Supplementary Proposition 4.

From equation (C24) we see that the derivative of l⇤C with respect to ↵x and the derivative of l⇤J with respect
to ↵x have the same sign if and only if

1 +
2�↵z

(1� �)2
l
⇤
J > 0 (F43)

Write this key term T (�⇤) > 0 where

T (�) := 1 +
2�↵z

(1� �)2
lJ (�) (F44)

Clearly � � 0 su�ces for T (�⇤) > 0. When � < 0, T (�⇤) > 0 if and only if

l
⇤
J < � (1� �)2

2�↵z

:= lcrit (F45)

From Proposition 3 and Remark 1 we know that the maximum of l⇤J is l
⇤
max

= (1� �)/↵z. If l⇤
max

< lcrit,
i.e., if � 2 (�1, 0), the inequality (F45) holds and therefore T (�⇤) > 0. Alternatively, if l⇤

max
> lcrit, i.e., if

� 2 (�1,�1), there exists a subset of ↵x such that the inequality (F45) does not hold and in turn T (�⇤) < 0.
We now determine the set of ↵x such that (F45) does not hold, conditional on � < �1. For any c > 1

we know from Proposition 3 and Remark 1 that l
⇤
J is strictly decreasing in ↵x with lim↵x!0+ l

⇤
J = l

⇤
max

and lim↵x!1 l
⇤
J = 0. Hence for each � < �1 and c > 1 there is a unique critical point ↵

⇤⇤
x

> 0 such
that T (�⇤) > 0 if and only if ↵x > ↵

⇤⇤
x
. Similarly, for any c < 1 we again know from Proposition 3 and

Remark 1 that l⇤J is strictly decreasing in ↵x if and only if ↵x < ↵
⇤⇤
x

and lim↵x!0+ l
⇤
J = lim↵x!1 l

⇤
J = l

⇤
max

.
Let l

⇤
min

denote the journalists’ loss at the ↵x = ↵
⇤⇤
x

that achieves the minimum. For any c < 1 and any
fixed loss l 2 (l⇤

min
, l

⇤
max

) there are two critical points ↵
x
(l) < ↵

⇤⇤
x

< ↵x(l) such that l
⇤
J < l if and only if

↵x 2 (↵
x
(l),↵x(l)). Then for each � < �1 and c < 1 there are two possibilities, either lcrit 2 (l⇤

min
, l

⇤
max

) or
lcrit  l

⇤
min

. For the interior cases lcrit 2 (l⇤
min

, l
⇤
max

) we define the critical points by ↵
⇤⇤
x

:= ↵
x
(lcrit) and

↵
⇤⇤
x

:= ↵x(lcrit). For the boundary case lcrit  l
⇤
min

we define the critical points by ↵
⇤⇤
x

= ↵
⇤⇤
x

= +1. Given
these critical points, we have T (�⇤) > 0 if and only if ↵x 2 (↵⇤⇤

x
,↵

⇤⇤
x
). ⇤

G Knife-edge case c = 1

In this appendix we discuss the technicalities that arise when the costs of manipulation c = 1 exactly.

Preliminaries. There is no issue with c = 1 if the relative precision ↵  4. The issues with c = 1 arise only
if ↵ > 4. To see this, first recall from Lemma 1 that if ↵ > 1 the citizens’ best response k(�;↵) is increasing
in � on the interval [0, �̂(↵)] and obtains its maximum at � = �̂(↵) = 1�1/

p
↵ 2 (0, 1). At the maximum, the

citizens’ best response takes on the value k(�̂(↵);↵) =
p
↵/2. Hence for ↵ > 4 the maximum value exceeds

1. Moreover, by continuity of the best response in � if ↵ > 4 there is an interval of � such that k(�;↵) > 1.
The boundaries of this interval (�(↵), �(↵)) are given by the roots of k(�;↵) = 1, which work out to be

�(↵) , �(↵) =
1

2

✓
1±

p
1� (4/↵)

◆
, ↵ � 4 (G1)

Observe that this interval is symmetric and centred on 1/2 with a width of

�(↵)� �(↵) =
p

1� (4/↵) � 0, ↵ � 4 (G2)
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If ↵ = 4, we have �(4) = �(4) = 1/2 but as ↵ increases the width of the interval (�(↵), �(↵)) expands around
1/2 with the boundaries �(↵) ! 0+ and �(↵) ! 1� as ↵ ! 1. Now recall from Proposition 1 that only
k 2 [0,min(c, 1)] and � 2 [0, 1] are candidates for an equilibrium. So if ↵ > 4 then none of the values of
� 2 (�(↵), �(↵)) are candidates for an equilibrium.

Costs of manipulation, c 6= 1. Now consider the politician’s best response �(k; c) parameterized by
c 6= 1 and suppose ↵ > 4. When c 6= 1, the politician’s objective depends on � over the entire support
k 2 [0,min(c, 1)]. From Proposition 1, there is a unique intersection between the politician’s and the citizens’
best responses. As illustrated below, if c < 1 the politician’s best response �(k; c < 1) lies above �(k; 1) =
k/(1 + k) and hence the equilibrium point k⇤, �⇤ must be on the “upper branch” of k(�;↵) where �

⇤
> �(↵).

But for the same value of ↵ and instead c > 1 the equilibrium point k⇤, �⇤ must be on the “lower branch” of
k(�;↵) where �

⇤
< �(↵) because the politician’s best response �(k; c > 1) lies below �(k; 1) = k/(1 + k).

0 1
0

�(↵)

0.5

�(↵)

1

↵ < 1 ↵ > 4

c = 1� "

c = 1 + "

response coe�cient, k

m
an

ip
ul
at
io
n
co
e�

ci
en
t,

�

0 1

manipulation �
⇤

↵ > 4

↵ > 4

cost of manipulation, c

Discontinuity at c = 1 and jump in the amount of manipulation �⇤

The left panel shows the citizens’ best response k(�;↵) for ↵ < 1, ↵ = 4 and ↵ > 4 (blue) and the politician’s best response

�(k; c) for c = 1 � ", c = 1, and c = 1 + " (red). For ↵ > 4, in the limit as c ! 1
�

the equilibrium is at k⇤ = 1, �⇤ = �(↵)
but in the limit as c ! 1

+
the equilibrium is at k⇤ = 1, �⇤ = �(↵). For ↵ > 4 and c = 1 exactly both of these are equilibria

because for this knife-edge special case the politician is indi↵erent between �(↵) and �(↵). The right panel shows the equilibrium

manipulation �⇤ as a function of c for ↵ < 1, ↵ = 4 and ↵ > 4. For ↵  4, the manipulation �⇤ is continuous in c. But for ↵ > 4

the manipulation jumps discontinuously at c = 1. In the limit as ↵ ! 1 the boundaries �(↵) ! 0
+

and �(↵) ! 1
+

so that the

manipulation jumps by the maximum possible amount, from �⇤ = 0 if c < 1 to �⇤ = 1 if c > 1.

Summary. In brief, when ↵ > 4 for each c < 1 the equilibrium �
⇤
> �(↵) with �

⇤ ! �(↵) from above as
c ! 1� and for each c > 1 the equilibrium �

⇤
< �(↵) with �

⇤ ! �(↵) from below as c ! 1+.

Knife-edge case. Now consider the case c = 1 exactly. The key part of the politician’s objective becomes

B(�, k)� C(�) = (k2 � 1)�2 + 2k(1� k)� + (1� k)2 (G3)

When k 6= 1, the politician’s best response is �(k; 1) = k/(1 + k), which is increasing in k and approaches
1/2 as k ! 1. But when k = 1, the politician’s objective is independent of � and in turn the politician is
indi↵erent in the choice of �. The equilibrium (k⇤ = 1, �⇤) is thus entirely determined by the citizens’ best
response. If ↵ < 4, the citizens’ best response k(�;↵) < 1 so that k⇤ = 1 is never an equilibrium. If ↵ = 4,
there is a unique equilibrium determined by the maximum of the citizens’ best response (k⇤ = 1, �⇤ = 1/2).
If ↵ > 4, there are two equilibria corresponding to the two roots of k(�;↵) = 1: namely (k⇤ = 1, �⇤ = �(↵))
and (k⇤ = 1, �⇤ = �(↵)).
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Further intuition for large changes in manipulation near c = 1. Now consider the sensitivity of the
equilibrium amount of manipulation to changes in c near c = 1. Recall that, taking the citizens’ k as given,
the politician chooses manipulation � to maximize

V (�, k) =
1

↵z

(B(�, k)� C(�)) +
1

↵x

k
2 (G4)

with benefit B(�, k) = (k� + 1� k)2 and costs of manipulation C(�) = c�
2.

Now consider an environment where the citizens are inclined to be very responsive to their signals, ↵ ! 1
so that k ! min(c, 1). First, suppose that c > 1 so that k ! 1. Then the relevant part of the politician’s
objective simplifies to

B(�, 1)� C(�) = (1� c)�2 (G5)

so that for any c > 1 the politician will choose � = 0. Next, suppose instead that c < 1 so that k ! c. In
this case the relevant part of the politician’s objective simplifies to

B(�, c)� C(�) = �c(1� c)�2 + 2c(1� c)� + (1� c)2 (G6)

so that for any c < 1 the politician will choose � = 1. In short, as ↵ ! 1, the politician’s manipulation is a
step function in c, with � = 1 for all c < 1 and � = 0 for all c > 1.

What is the meaning of c = 1? So given that the amount of manipulation can be extremely sensitive to c

near c = 1, what does c = 1 mean? Recall that in the politician’s objective (5) the gross benefit
R 1
0 (ai�✓)2 di

has a coe�cient normalized to 1. If instead we had written the objective with b
R 1
0 (ai � ✓)2 di for some b > 0

then throughout the analysis the relevant parameter would be the cost/benefit ratio c/b and the critical
point would be where the cost/benefit ratio is c/b = 1. In this parameterization, the politician’s equilibrium
manipulation is extremely sensitive to changes in either c or b in the vicinity of c/b = 1. With ↵ high and
costs and benefits evenly poised, a small decrease in b or small increase in c would lead to a large reduction
in manipulation.

H Coe�cients sum to one

In this appendix we show that writing the citizens’ linear strategy as ai = kxi + (1 � k)z is without loss of
generality. Suppose that the citizens’ linear strategy is

ai = �0 + �1xi + �2z

for some coe�cients �0,�1,�2. We will show that in any linear equilibrium �0 = 0 and �1 + �2 = 1.
The politician’s problem is then to choose y to maximize

V (y) =

Z 1

0
(�0 + �1(y + "i) + �2z � ✓)2 di� c(y � ✓)2

= (�0 + �1y + �2z � ✓)2 +
1

↵x

�
2
1 � c(y � ✓)2

The solution to this problem is
y = �0 + �1✓ + �2z

where

�0 =
�0�1

c� �
2
1

(H1)

�1 =
c� �1

c� �
2
1

(H2)

�2 =
�1�2

c� �
2
1

(H3)
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But if the politician has the strategy y = �0 + �1✓ + �2z, the citizens’ posterior expectation of ✓, and
hence their action ai, is given by

ai = E[✓ |xi] =
�1↵x

�
2
1↵x + ↵z

✓
1

�1
(xi � �2z)�

�0

�1

◆
+

↵z

�
2
1↵x + ↵z

z

=
�1↵x

�
2
1↵x + ↵z

xi +
↵z � �1↵x�2

�
2
1↵x + ↵z

z � �1↵x

�
2
1↵x + ↵z

�0

Matching coe�cients with ai = �0 + �1xi + �2z we then have

�0 = � �1↵x

�
2
1↵x + ↵z

�0 (H4)

�1 =
�1↵x

�
2
1↵x + ↵z

(H5)

�2 =
↵z � �1↵x�2

�
2
1↵x + ↵z

(H6)

First observe that equations (H1) and (H4) together imply that the intercepts are �0 = �0 = 0. Then
observe from (H2)-(H3) and (H5)-(H6) that �1 + �2 = 1 implies �1 + �2 = 1 and vice-versa. So indeed the
citizens’ strategy takes the form ai = kxi + (1 � k)z where k = �1 and the politician’s strategy takes the
form y = (1� �)✓ + �z where � = �2. Hence from (H3) and (H5) we can write

� =
k � k

2

c� k2
, k =

(1� �)↵

(1� �)2↵+ 1

where ↵ := ↵x/↵z. These are the same as the best response formulas equations (13) and (18) in the main
text and from Proposition 1 we know that there is a unique pair k⇤, �⇤ satisfying these conditions.
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